Volume 4, Issue 4, December 2019, Page: 45-51
A Concise Review on the Significance of QSAR in Drug Design
Hiteshi Tandon, Department of Chemistry, Manipal University Jaipur, Jaipur, India
Tanmoy Chakraborty, Department of Chemistry, School of Engineering, Presidency University, Bengaluru, India
Vandana Suhag, Department of Applied Sciences, BML Munjal University, Gurgaon, India
Received: Dec. 2, 2019;       Accepted: Dec. 16, 2019;       Published: Dec. 27, 2019
DOI: 10.11648/j.cbe.20190404.11      View  34      Downloads  31
Abstract
Drug designing is a crucial step in the exploration of novel drugs which requires potent methodologies. One of such methodologies is Quantitative Structure Activity Relationship (QSAR) which is a widely used statistical tool that correlates the structure of a molecule to a biological activity as a function of molecular descriptors, thereby, playing an essential role in the drug designing. QSAR utilizes Density Functional Theory (DFT) based chemical descriptors for this purpose. The selection of such significant molecular descriptors from various available descriptors is the foremost challenge in a QSAR as structural descriptors are representative of the molecular characteristics accountable for the relevant activity. Recently, new QSAR approaches have been introduced which further enhance the study of the activities. Further, the constructed QSAR models also need to be tested and validated for their efficiency and practical usage. As the QSAR models are structure specific, they may not be universally applicable. However, because of their high precision and efficacy, they have a promising future in the world of drug design. This review briefly summarizes the role of descriptor based QSAR in drug design in conjunction with existing QSAR approaches and also the utility as well as constraints of this approach in drug design.
Keywords
QSAR, Density Functional Theory (DFT), Quantum Chemical Descriptors, Drug Design
To cite this article
Hiteshi Tandon, Tanmoy Chakraborty, Vandana Suhag, A Concise Review on the Significance of QSAR in Drug Design, Chemical and Biomolecular Engineering. Vol. 4, No. 4, 2019, pp. 45-51. doi: 10.11648/j.cbe.20190404.11
Copyright
Copyright © 2019 Authors retain the copyright of this article.
This article is an open access article distributed under the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Reference
[1]
Tandon, H., Chakraborty, T., Suhag, V. (2019) A New Model of Atomic Nucleophilicity Index and Its Application in the Field of QSAR. International Journal of Quantitative Structure-Property Relationships 4 (3), 99-117.
[2]
Yang, H., Sun, L., Li, W., Liu, G., Tang, Y. (2018) In silico prediction of chemical toxicity for drug design using machine learning methods and structural alerts. Front. Chem. 6, 30.
[3]
Khan, A. U. (2016) Descriptors and their selection methods in QSAR analysis: paradigm for drug design. Drug Discov. Today 21 (8), 1291-1302.
[4]
Leach, A. R., Gillet, V. J. (2007) An introduction to chemoinformatics. Springer, Dordrecht.
[5]
Todeschini, R., Consonni, V. (2000) Handbook of molecular descriptors. Wiley-VCH, Weinheim.
[6]
Rogers, D., Hahn, M. (2010) Extended-connectivity fingerprints. J. Chem. Inf. Model 50 (5), 742-754.
[7]
National Institutes of Health (2009) PubChem substructure fingerprint. ftp://ftp.ncbi.nlm.nih.gov/pubchem/specifications/pubchem_fingerprints.txt. Accessed 13 Dec 2019.
[8]
Duan, J., Dixon, S. L., Lowrie, J. F., Sherman, W. (2010) Analysis and comparison of 2D fingerprints: insights into database screening performance using eight fingerprint methods. J. Mol. Graph. Model. 29 (2), 157–170.
[9]
Hansch, C., Muir, R. M., Fujita, T., Maloney, P. P., Geiger, F., et al (1963) The correlation of biological activity of plant growth regulators and chloromycetin derivatives with Hammett constants and partition coefficients. J. Am. Chem. Soc. 85 (18), 2817-2824.
[10]
Hansch, C., Leo, A. J. (1979) Substitute Constants for Correlation Analysis in Chemistry and Biology. Wiley, New York.
[11]
Du, Q., Mezey, P. G., Chou, K. C. (2005) Heuristic molecular lipophilicity potential (HMLP): A 2D-QSAR study to LADH of molecular family pyrazole and derivatives. J. Comput. Chem. 26 (5), 461-470.
[12]
Klebe, G., Mietzner, T. (1994) A fast and efficient method to generate biologically relevant conformations. J. Comput Aided. Mol. Des. 8 (5), 583-606.
[13]
Klebe, G., Abraham, U. (1999) Comparative molecular similarity index analysis (CoMSIA) to study hydrogen-bonding properties and to score combinatorial libraries. J. Comput. Aided. Mol. Des. 13 (1), 1-10.
[14]
Marshall, G. R., Cramer III, R. D. (1988) Three-dimensional structure-activity relationships. Trends pharmacol. Sci. 9 (8), 285-289.
[15]
Cramer III, R. D., Patterson, D. E., Bunce, J. D. (1989) Recent advances in comparative molecular field analysis (CoMFA). Prog. Clin. Boil. Res. 291, 161.
[16]
Hopfinger, A. J., Wang, S., Tokarski, J. S., Jin, B., Albuquerque, M., et al (1997) Construction of 3D-QSAR models using the 4D-QSAR analysis formalism. J. Am. Chem. Soc. 119 (43), 10509-10524.
[17]
Tong, W., Lowis, D. R., Perkins, R., Chen, Y., Welsh, et al (1998) Evaluation of quantitative structure−activity relationship methods for large-scale prediction of chemicals binding to the estrogen receptor. J. Chem. Inf. Comput. Sci. 38 (4), 669-677.
[18]
Roy, K. (2017) Advances in QSAR Modeling: Applications in Pharmaceutical, Chemical, Food, Agricultural and Environmental Sciences. Springer, Cham.
[19]
Rose, K., Hall, L. H., Kier, L. B. (2002) Modeling blood-brain barrier partitioning using the electrotopological state. J. Chem. Inf. Comput. Sci 42 (3), 651-666.
[20]
Tandon, H., Chakraborty, T., Suhag, V. (2019) A Brief Review on Importance of DFT in Drug Design. Res. Med. Eng. Sci. 7 (4), RMES. 000668 (791-795).
[21]
Kier, L. B., Hall, L. H. (2001) Database organization and searching with E-state indices. SAR QSAR Environ. Res. 12 (1-2), 55-74.
[22]
Hall, L. H., Vaughn, T. A. (1997) QSAR of phenol toxicity using electrotopological state and kappa shape indices. Med. Chem. Res. 7 (6-7), 407-416.
[23]
Cartier, A., Rivail, J. L. (1987) Electronic descriptors in quantitative structure—activity relationships. Chemom. Intell. Lab. Sys. 1 (4), 335-347.
[24]
Redl, G., Berkoff, C. E. (1974) Quantitative drug design. Chem. Soc. Rev. 3 (3), 273-292.
[25]
Franke, R. (1984) Theoretical Drug Design Methods (Pharmacochemistry Library) Vol. 7, Elsevier, Amsterdam.
[26]
Gupta, S. P., Singh, P., Bindal, M. C. (1983) QSAR studies on hallucinogens. Chem. Rev. 83 (6), 633-649.
[27]
Gupta, S. P. (1987) QSAR studies on enzyme inhibitors. Chem. Rev. 87 (5), 1183-1253.
[28]
Gupta, S. P. (1991) QSAR (quantitative structure-activity relationship) studies on local anesthetics. Chem. Rev. 91 (6), 1109-1119.
[29]
Brown, R. E., Simas, A. M. (1982) On the applicability of CNDO indices for the prediction of chemical reactivity. Theor. Chim. Acta. 62 (1), 1-16.
[30]
Murugan, R., Grendze, M. P., Toomey, J. E. Jr., Katritzky, A. R., Karelson, M. et al (1994) Predicting Physical Properties from Molecular Structure. Chemtech 24, 17-23.
[31]
Bonin, D. K., Kresin, V. V. (1997) Electric-Dipole Polarizabilities of Atoms, Molecules and Clusters, World Scientific, Singapore.
[32]
Miller, K. J. (1990) Additivity methods in molecular polarizability. J. Am. Chem. Soc. 112 (23), 8533-8542.
[33]
Pauling, L. (1932) The nature of the chemical bond. IV. The energy of single bonds and the relative electronegativity of atoms. J. Am. Chem. Soc. 54 (9), 3570-3582.
[34]
Pauling, L. (1960) The nature of the chemical bond, 3rd Edn., Cornell University Press, Ithaca, New York.
[35]
Parr, R. G., Szentpály, L. v., Liu., S. (1999) Electrophilicity Index. J. Am. Chem. Soc. 121 (9), 1922-1924.
[36]
Tandon, H., Chakraborty, T., Suhag, V. (2019) A New Scale of the Electrophilicity Index Invoking the Force Concept and its Application in Computing the Internuclear Bond Distance. J. Struct. Chem. 60 (11), 1725-1734.
[37]
Shalini, A., Tandon, H., Chakraborty, T. (2017) Molecular Electrophilicity Index – A Promising Descriptor for Predicting Toxicological Property. J. Bioequiv. Availab. 9 (6), 518-527.
[38]
Tandon, H., Chakraborty, T., Suhag, V. (2019) A new scale of atomic static dipole polarizability invoking other periodic descriptors. J. Math. Chem. 57 (9), 2142-2153.
[39]
Tandon, H., Chakraborty, T., Suhag, V. (2019) A model of atomic compressibility and its application in QSAR domain for toxicological property prediction. J. Mol. Model. 25 (10), 303.
[40]
Cocchi, M., Menziani, M. C., De Benedetti, P. G., Cruciani, G. (1992) Theoretical versus empirical molecular descriptors in monosubstituted benzenes: A chemometric study. Chemom. Intell. Lab. Sys. 14 (1-3), 209-224.
[41]
Magee, P. S., King, J. W. (1989) Correlations and mechanisms of chemical toxicity in animals. In ACS symposium series, Oxford University Press 413, 390-399.
[42]
Turki, T., Wei, Z., Wang, J. T. (2017) Transfer learning approaches to improve drug sensitivity prediction in multiple Myeloma patients. IEEE Access 5, 7381–7393.
[43]
Du, Q. S., Huang, R. B., Chou, K. C. (2008) Recent advances in QSAR and their applications in predicting the activities of chemical molecules, peptides and proteins for drug design. Curr. Protein Pept. Sci. 9 (3), 248–259.
[44]
Gertrudes, J. C., Maltarollo, V. G., Silva, R. A., Oliveira, P. R., Honorio, K. M., et al (2012) Machine learning techniques and drug design. Curr. Med. Chem. 19 (25), 4289–4297.
[45]
Maltarollo, V. G., Gertrudes, J. C., Oliveira, P. R., Honorio, K. M. (2015) Applying machine learning techniques for ADME-Tox prediction: a review. Expert Opin. Drug Metab. Toxicol. 11 (2), 259–271.
[46]
Egeghy, P. P., Sheldon, L. S., Isaacs, K. K., Özkaynak, H., Goldsmith et al (2016) Computational exposure science: an emerging discipline to support 21st-century risk assessment. Environ. Health Perspect. 124 (6), 697–702.
[47]
Chemi, G., Gemma, S., Campiani, G., Brogi, S., Butini, S. et al (2017) Computational tool for fast in silico evaluation of hERG K+ channel affinity. Front. Chem. 5, 7.
[48]
Brogi, S., Papazafiri, P., Roussis, V., Tafi, A. (2013) 3D-QSAR using pharmacophore-based alignment and virtual screening for discovery of novel MCF-7 cell line inhibitors. Eur. J. Med. Chem. 67, 344–351.
[49]
Melo-Filho, C. C., Dantas, R. F., Braga, R. C., Neves, B. J., Senger et al (2016) QSAR-driven discovery of novel chemical scaffolds active against Schistosoma mansoni. J. Chem. Inf. Model. 56 (7), 1357–1372.
[50]
Neves, B. J., Dantas, R. F., Senger, M. R., Melo-Filho, C. C., Valente, W. C. et al (2016) Discovery of new anti-schistosomal hits by integration of QSAR-Based virtual screening and high content screening. J. Med. Chem. 59 (15), 7075–7088.
[51]
Zaccagnini, L., Brogi, S., Brindisi, M., Gemma, S., Chemi et al (2017) Identification of novel fluorescent probes preventing PrPSc replication in prion diseases. Eur. J. Med. Chem. 127, 859–873.
[52]
Sliwoski, G., Kothiwale, S. K., Meiler, J., Lowe, E. W., Barker, E. L. (2014) Computational methods in drug discovery. Pharmacol. Rev. 66 (1), 334–395.
[53]
Raies, A. B., Bajic, V. B. (2016) In silico toxicology: computational methods for the prediction of chemical toxicity. Wiley Interdiscip. Rev. Comput. Mol. Sci. 6 (2), 147–172.
[54]
Gramatica, P., Sangion, A. (2016) A historical excursus on the statistical validation parameters for QSAR models: a clarification concerning metrics and terminology. J. Chem. Inf. Model. 56 (6), 1127–1131.
[55]
Cherkasov, A., Muratov, E. N., Fourches, D., Varnek, A., Baskin et al (2014) QSAR modeling: where have you been? Where are you going to? J. Med. Chem. 57 (12), 4977–5010.
[56]
Fang, C., Xiao, Z. (2016) Receptor-based 3D-QSAR in drug design: methods and applications in kinase studies. Curr. Top. Med. Chem. 16 (13), 1463–1477.
[57]
Cronin, M. T. D., Schultz, T. W. (2003) Pitfalls in QSAR. J. Mol. Struct. Theochem 622 (1-2), 39–51.
[58]
Arthur, M. D. (2008) QSAR: dead or alive? J. Comput. Aided Mol. Des. 22, 81–89.
[59]
Dearden, J. C., Cronin, M. T. D., Kaiser, K. L. E. (2009) How not to develop a quantitative structure-activity or structure-property relationship (QSAR/QSPR). SAR QSAR Environ. Res. 20 (3-4), 241–266.
[60]
Scior, T., Medina-Franco, J. L., Do, Q. T., Martínez-Mayorga, K., Yunes Rojas, J. A. et al (2009) How to recognize and workaround pitfalls in QSAR studies: a critical review. Curr. Med. Chem. 16 (32), 4297–4313.
[61]
Wang, T., Wu, M. B., Lin, J. P., Yang, L. R. (2015) Quantitative structureactivity relationship: promising advances in drug discovery platforms. Expert Opin. Drug Discov. 10 (12), 1283-1300.
[62]
Ponzoni, I., Sebastián-Pérez, V., Requena-Triguero, C., Roca, C., Martínez, M. J. et al (2017) Hybridizing feature selection and feature learning approaches in QSAR modeling for drug discovery. Sci. Rep. 7 (1), 2403.
[63]
Zhao, L., Wang, W., Sedykh, A., Zhu, H. (2017) Experimental errors in QSAR modeling sets: What we can do and what we cannot do. ACS Omega 2 (6), 2805–2812.
[64]
Richter, L., Ecker, G. F. (2015) Medicinal chemistry in the era of big data. Drug Discov. Today 14, 37–41.
[65]
Gadaleta, D., Mangiatordi, G. F., Catto, M., Carotti, A., Nicolotti, O. (2016) Applicability domain for QSAR models: where theory meets reality. International Journal of Quantitative Structure-Property Relationships (IJQSPR), 1 (1), 45-63.
[66]
Andrade, C. H., Pasqualoto, K. F., Ferreira, E. I., Hopfinger, A. J. (2010) 4D-QSAR: perspectives in drug design. Molecules 15 (5), 3281-3294.
[67]
Cohen, N. C. (Ed.) (1996) Guidebook on molecular modeling in drug design. Academic Press: London.
[68]
Hansch, C.; Fujita, T. (1964) Rho-Sigma-Pi Analysis. A method for the correlation of biological activity and chemical structure. J. Am. Chem. Soc. 86 (8), 1616-1626.
[69]
Kubinyi, H. (1993) QSAR: Hansch Analysis and Related Approaches In Methods and Principles in Medicinal Chemistry. Vol. 1, Mannhold, R.; Kroogsgard-Larsen, P.; Timmerman, H. (Eds.) Wiley-VCH, Weinheim, pp 240.
[70]
Dunn Iii, W. J., Scott, D. R., Glen, W. G. (1989) Principal components analysis and partial least squares regression. Tetrahedron Comput. Methodol. 2 (6), 349-376.
[71]
de Julian-Ortiz, J. V., Garcia-Domenech, R., Galvez, J., Pogliani, L. (2005) Predictability and prediction of lowest observed adverse effect levels in a structurally heterogeneous set of chemicals. SAR QSAR Environ. Res. 16 (3), 263-272.
[72]
Prado-Prado, F. J., Gonzalez-Diaz, H., de la Vega, O. M., Ubeira, F. M., Chou, K. C. (2008) Unified QSAR approach to antimicrobials. Part 3: first multi-tasking QSAR model for input-coded prediction, structural back-projection, and complex networks clustering of antiprotozoal compounds. Bioorg. Med. Chem. 16 (11), 5871-5880.
[73]
Hemmateenejad, B. (2005) Correlation ranking procedure for factor selection in PC-ANN modeling and application to ADMETox evaluation. Chemom. Intell. Lab. Syst. 75 (2), 231-245.
[74]
Rogers, D., Hopfinger, A. J. (1994) Application of Genetic Function Approximation to Quantitative Structure-Activity Relationships and Quantitative Structure-Property Relationships. J. Chem. Inf. Comput. Sci. 34 (4), 854-866.
[75]
Goulon, A., Picot, T., Duprat, A., Dreyfus, G. (2007) Predicting activities without computing descriptors: graph machines for QSAR. SAR QSAR Environ. Res. 18 (1), 141-153.
[76]
Yuan, H., Wang, Y., Cheng, Y. (2007) Local and global quantitative structure-activity relationship modeling and prediction for the baseline toxicity. J. Chem. Inf. Model 47 (1), 159-169.
[77]
Fernandez, M., Caballero, J. (2006) Bayesian-regularized genetic neural networks applied to the modeling of non-peptide antagonists for the human luteinizing hormone-releasing hormone receptor. J. Mol. Graphics Modell. 25 (4), 410-422.
[78]
Ren, S. Kim, H. (2003) Comparative assessment of multiresponse regression methods for predicting the mechanisms of toxic action of phenols. J. Chem. Inf. Comput. Sci. 43 (6), 2106-2110.
[79]
Du, Q. S., Huang, R. B., Wei, Y. T., Wang, C. H., Chou, K. C. (2007) Peptide reagent design based on physical and chemical properties of amino acid residues. J. Comput. Chem. 28 (12), 2043-2050.
[80]
Du, Q. S., Huang, R. B., Wei, Y. T., Du, L. Q., Chou, K. C. (2007) Multiple field three dimensional quantitative structure–activity relationship (MF-3D-QSAR). J. Comput. Chem. 29 (2), 211-219.
[81]
Du, Q. S., Wei, Y. T., Pang, Z. W., Chou, K. C. and Huang, R. B. (2007) Predicting the affinity of epitope-peptides with class I MHC molecule HLA-A*0201: an application of amino acid-based peptide prediction. Prot. Eng. Des. Select. 20 (9), 417-423.
Browse journals by subject