| Peer-Reviewed

Roles of the PI3K/AKT Signalling Pathway in Cholangiocarcinoma: A Mini Review

Received: 1 August 2023     Accepted: 21 August 2023     Published: 31 August 2023
Views:       Downloads:
Abstract

Cholangiocarcinoma (CCA) is a diverse group of malignant tumors originating from the bile duct and other sites in the biliary tree. Effective treatment methods for CCA are currently lacking. Therefore, understanding the genetic mechanisms and therapeutic targets is crucial for improving treatment outcomes and survival rates. This review focuses on the key roles of the phosphatidylinositol 3-kinase (PI3K) signaling pathway in CCA tumor initiation and progression. Potential therapeutic approaches based on this pathway were also discussed. Results showed increased activation of the PI3K/AKT pathway in CCA tissues and proteins like p85α, mTOR, and GSK-3β were upregulated with tumor metastasis. However, PTEN expression, a tumor suppressor protein, was suppressed via loss or phosphorylation. The emergence of certain drugs aimed at the dysfunctional PI3K/AKT pathway shows potential for enhancing Cholangiocarcinoma treatment. For example. dual inhibitors such as NVP-BEZ235 can effectively inhibit CCA cell growth and phosphorylation of AKT and mTOR. This suggests that the use of inhibitors to alter this pathway could potentially enhance survival rates and further the progress of Cholangiocarcinoma drug development.

Published in Science Frontiers (Volume 4, Issue 3)
DOI 10.11648/j.sf.20230403.12
Page(s) 40-47
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2023. Published by Science Publishing Group

Keywords

Cholangiocarcinoma, Molecular Pathogenesis, PI3K/AKT Pathway, CCA Therapy

References
[1] Byrling, J., Andersson, B., Marko-Varga, G., Andersson, R., 2016. Cholangiocarcinoma – current classification and challenges towards personalised medicine. Scandinavian Journal of Gastroenterology 51 (6), 641–643. https://doi.org/10.3109/00365521.2015.1127409
[2] Razumilava, N., Gores, G. J., 2013. Classification, diagnosis, and management of cholangiocarcinoma. Clin Gastroenterol Hepatol 11 (1), 13–e4. https://doi.org/10.1016/j.cgh.2012.09.009
[3] Tsilimigras, D. I., Brodt, P., Clavien, PA., Muschel, R. J., D’Angelica, M. I., Endo, I., Parks, R. W., Doyle, M., de Santibañes, E., Pawlik, T. M., 2021. Liver metastases. Nature Reviews Disease Primers 7, 27. https://doi.org/10.1038/s41572-021-00261-6
[4] Yu, T. H., Chen, X., Zhang, X. H., Zhang, E. C., Sun, C. X., 2021. Clinicopathological characteristics and prognostic factors for intrahepatic cholangiocarcinoma: a population-based study. Scientific Reports 11, 3990. https://doi.org/10.1038/s41598-021-83149-5
[5] Brindley, P. J., Bachini, M., Ilyas, S. I., Khan, S. A., Loukas, A., Sirica, A. E., Teh, B. T., Wongkham, S., Gores, G. J., 2021. Cholangiocarcinoma. Nature Reviews Disease Primers 7, 65. https://doi.org/10.1038/s41572-021-00300-2
[6] Shaib, Y., El-Serag, H. B., 2004. The epidemiology of cholangiocarcinoma. Semin Liver Dis 24 (2), 115–125. https://doi.org/10.1055/s-2004-828889
[7] Moeini, A., Haber, P. K., Sia, D., 2021. Cell of origin in biliary tract cancers and clinical implications. JHEP Reports 3 (2), 100226. https://doi.org/10.1016/j.jhepr.2021.100226
[8] He, Y., Sun, M. M., Zhang, G. G., Yang, J., Chen, K. S., Xu, W. W., Li, B., 2021. Targeting PI3K/Akt signal transduction for cancer therapy. Signal Transduction and Targeted Therapy 6, 425 (2021). https://doi.org/10.1038/s41392-021-00828-5
[9] Liu, P., Cheng, H., Roberts, T. M., Zhao, J. J., 2009. Targeting the phosphoinositide 3-kinase pathway in cancer. Nature Reviews Drug Discovery 8, 627–644 (2009). https://doi.org/10.1038/nrd2926
[10] Yang, Q., Jiang, W., Hou, P., 2019. Emerging role of PI3K/AKT in tumor-related epigenetic regulation. Seminars in Cancer Biology 59, 112–124. https://doi.org/10.1016/j.semcancer.2019.04.001
[11] Zheng D, Zhu G, Liao S, Yi W, Luo G, He J, Pei Z, Li G, Zhou Y., 2015 Dysregulation of the PI3K/Akt signaling pathway affects cell cycle and apoptosis of side population cells in nasopharyngeal carcinoma. Oncology Letter 10 (1): 182-188. d https://doi.org/10.3892/ol.2015.3218
[12] Liu, R., Chen, Y., Liu, G., Li, C., Song, Y., Cao, Z., Li, W., Hu, J., Lu, C., Liu, Y., 2020. PI3K/AKT pathway as a key link modulates the multidrug resistance of cancers. Cell Death & Disease 11, 797. https://doi.org/10.1038/s41419-020-02998-6
[13] Tiemin, P., Meng, F., Xiao, P., Han, J., Song, R., Lan, Y., Wang, Y., Xue, J., Lang, Q., He, Z., Li, J., Guo, Z., Liu, G., Sun, B., Zhao, M., Meng, Q., Liang, D., Liu, L., 2020. MUC13 promotes intrahepatic cholangiocarcinoma progression via EGFR/PI3K/AKT pathways. Journal of Hepatology 72 (4), 761–773. https://doi.org/10.1016/j.jhep.2019.11.021
[14] Xu, R. F., Sun, J. P., Zhang, S. R., Zhu, G. S., Li, L. B., Liao, Y. L., Xie, J. M., Liao, W. J., 2011. KRAS and PIK3CA but not BRAF genes are frequently mutated in Chinese cholangiocarcinoma patients. Biomedicine & Pharmacotherapy 65 (1), 22–26. https://doi.org/10.1016/j.biopha.2010.06.009
[15] Riener, M. O., Bawohl, M., Clavien, P. A., Jochum, W., 2008. Rare PIK3CA hotspot mutations in carcinomas of the biliary tract. Genes, Chromosomes & Cancer 47 (5), 363–367. https://doi.org/10.1002/gcc.20540
[16] Miller, K. D., Nogueira, L., Mariotto, A. B., Rowland, J. H., Yabroff, K. R., Alfano, C. M., Jemal, A., Kramer, J. L., Siegel, R. L., 2019. Cancer treatment and survivorship statistics, 2019. CA: A Cancer Journal for Clinicians 69 (5), 363–385. https://doi.org/10.3322/caac.21565
[17] Palsapure, P., Kawale, A., Umate, R., Munjewar, P., 2022. Case report on management and outcome of cholangiocarcinoma. Journal of Pharmaceutical Negative Results 13, 938–940. https://doi.org/10.47750/pnr.2022.13.03.145
[18] Ebata, T., Yokoyama, Y., Igami, T., Sugawara, G., Takahashi, Y., Nimura, Y., Nagino, M., 2012. Hepatopancreatoduodenectomy for cholangiocarcinoma: A single-center review of 85 consecutive patients. Annals of Surgery 256 (2), 297–305. https://doi.org/10.1097/SLA.0b013e31826029ca
[19] Burger, I., Hong, K., Schulick, R., Georgiades, C., Thuluvath, P., Choti, M., Kamel, I., Geschwind, J. F. H., 2005. Transcatheter arterial chemoembolization in unresectable cholangiocarcinoma: Initial experience in a single institution. Journal of Vascular and Interventional Radiology 16 (3), 353–361. https://doi.org/10.1097/01.RVI.0000143768.60751.78
[20] Kawasaki, S., Imamura, H., Kobayashi, A., Noike, T., Miwa, S., Miyagawa, S., 2003. Results of surgical resection for patients with hilar bile duct cancer. Annals of Surgery 238 (1), 84–92. https://doi.org/10.1097/01.SLA.0000074984.83031.02
[21] Simo, K. A., Halpin, L. E., McBrier, N. M., Hessey, J. A., Baker, E., Ross, S., Swan, R. Z., Iannitti, D. A., Martinie, J. B., 2016. Multimodality treatment of intrahepatic cholangiocarcinoma: A review. Journal of Surgical Oncology 113 (1), 62–83. https://doi.org/10.1002/jso.24093
[22] Wang, K., Tepper, J. E., 2021. Radiation therapy-associated toxicity: Etiology, management, and prevention. CA: A Cancer Journal for Clinicians 71 (5), 437–454. https://doi.org/10.3322/caac.21689
[23] Tyson, G. L., El-Serag, H. B., 2011. Risk factors for cholangiocarcinoma. Hepatology 54 (1), 173–184. https://doi.org/10.1002/hep.24351
[24] O’Neill, J. A., 1992. Choledochal cyst. Current Problems in Surgery 29 (6), 371–410. https://doi.org/10.1016/0011-3840(92)90025-X
[25] Alsaleh, M., Leftley, Z., Barbera, T. A., Sithithaworn, P., Khuntikeo, N., Loilome, W., Yongvanit, P., Cox, I. J., Chamodol, N., Syms, R. R., Andrews, R. H., Taylor-Robinson, S. D., 2019. Cholangiocarcinoma: a guide for the nonspecialist. International Journal of General Medicine 12, 13–23. https://doi.org/10.2147/IJGM.S186854
[26] Lauby-Secretan, B., Loomis, D., Baan, R., El Ghissassi, F., Bouvard, V., Benbrahim-Tallaa, L., Guha, N., Grosse, Y., Straif, K., 2016. Use of mechanistic data in the IARC evaluations of the carcinogenicity of polychlorinated biphenyls and related compounds. Environmental Science and Pollution Research 23, 2220–2229. https://doi.org/10.1007/s11356-015-4829-4
[27] Rimini, M., Macarulla, T., Burgio, V., Lonardi, S., Niger, M., Scartozzi, M., Rapposelli, I. G., Aprile, G., Ratti, F., Pedica, F., Verdaguer, H., Nappo, F., Nichetti, F., Lai, E., Valgiusti, M., Cappetta, A., Fabregat-Franco, C., Fassan, M., De Braud, F., Puzzoni, M., Frassineti, G. L., Simionato, F., De Cobelli, F., Aldrighetti, L., Fornaro, L., Cascinu, S., Casadei-Gardini, A., 2022. Gene mutational profile of BRCAness and clinical implication in predicting response to platinum-based chemotherapy in patients with intrahepatic cholangiocarcinoma. European Journal of Cancer 171, 232–241. https://doi.org/10.1016/j.ejca.2022.05.004
[28] Wang, M., Chen, Z., Guo, P., Wang, Y., Chen, G., 2021. Therapy for advanced cholangiocarcinoma: Current knowledge and future potential. Journal of Cellular Molecular Medicine 25 (2), 618–628. https://doi.org/10.1111/jcmm.16151
[29] Ramírez-Merino, N., Aix, S. P., Cortés-Funes, H., 2013. Chemotherapy for cholangiocarcinoma: An update. World Journal Gastrointestinal Oncology 5 (7), 171–176. https://doi.org/10.4251/wjgo.v5.i7.171
[30] Czito, B. G., Anscher, M. S., Willett, C. G., 2006. Radiation therapy in the treatment of cholangiocarcinoma. Oncology 20 (8), 873–884; discussion 886-888, 893–895.
[31] Jereczek-Fossa, B. A., Marsiglia, H. R., Orecchia, R., 2002. Radiotherapy-related fatigue. Critical Reviews in Oncology/Hematology 41 (3), 317–325. https://doi.org/10.1016/S1040-8428(01)00143-3
[32] Frytak, S., Moertel, C. G., 1981. Management of nausea and vomiting in the cancer patient. JAMA 245 (4), 393–396. https://doi.org/10.1001/jama.1981.03310290055028
[33] Kole, A. J., Kole, L., Moran, M. S., 2017. Acute radiation dermatitis in breast cancer patients: challenges and solutions. Breast Cancer – Targets and Therapy 9, 313–323. https://doi.org/10.2147/BCTT.S109763
[34] Ntanasis-Stathopoulos, I., Tsilimigras, D. I., Gavriatopoulou, M., Schizas, D., Pawlik, T. M., 2020. Cholangiocarcinoma: investigations into pathway-targeted therapies. Expert Review of Anticancer Therapy 20 (9), 765–773. https://doi.org/10.1080/14737140.2020.1807333
[35] Charalampakis, N., Papageorgiou, G., Tsakatikas, S., Fioretzaki, R., Kole, C., Kykalos, S., Tolia, M., Schizas, D., 2021. Immunotherapy for cholangiocarcinoma: a 2021 update. Immunotherapy 13 (13), 1113–1134. https://doi.org/10.2217/imt-2021-0126
[36] Vivanco, I., Sawyers, C. L., 2002. The phosphatidylinositol 3-Kinase–AKT pathway in human cancer. Nature Reviews Cancer 2, 489–501. https://doi.org/10.1038/nrc839
[37] Cantley, L. C., 2002. The phosphoinositide 3-kinase pathway. Science 296 (5573), 1655–1657. https://doi.org/10.1126/science.296.5573.1655
[38] Manna, P., Jain, S. K., 2011. Hydrogen sulfide and l-cysteine increase phosphatidylinositol 3,4,5-trisphosphate (PIP3) and glucose utilization by inhibiting phosphatase and tensin homolog (PTEN) protein and activating phosphoinositide 3-kinase (PI3K)/serine/threonine protein kinase (AKT)/protein kinase Cζ/λ (PKCζ/λ) in 3T3l1 adipocytes. Journal of Biological Chemistry 286 (46), 39848–39859. https://doi.org/10.1074/jbc.M111.270884
[39] Ruggero, D., Sonenberg, N., 2005. The Akt of translational control. Oncogene 24, 7426–7434. https://doi.org/10.1038/sj.onc.1209098
[40] Yang, J., Nie, J., Ma, X., Wei, Y., Peng, Y., Wei, X., 2019. Targeting PI3K in cancer: mechanisms and advances in clinical trials. Molecular Cancer 18, 26. https://doi.org/10.1186/s12943-019-0954-x
[41] Porta, C., Paglino, C., Mosca, A., 2014. Targeting PI3K/Akt/mTOR signaling in cancer. Frontiers in Oncology 4, 64. https://doi.org/10.3389/fonc.2014.00064
[42] Yu, L., Wei, J., Liu, P., 2022. Attacking the PI3K/Akt/mTOR signaling pathway for targeted therapeutic treatment in human cancer. Seminars in Cancer Biology 85, 69–94. https://doi.org/10.1016/j.semcancer.2021.06.019
[43] Hennessy, B., Smith, D., Ram, P. Lu, Y., Mills, G. B., 2005. Exploiting the PI3K/AKT pathway for cancer drug discovery. Nature Reviews Drug Discovery 4, 988–1004 (2005). https://doi.org/10.1038/nrd1902
[44] Yothaisong, S., Dokduang, H., Techasen, A., Namwat, N., Yongvanit, P., Bhudhisawasdi, V., Puapairoj, A., Riggins, G. J., Loilome, W., 2013. Increased activation of PI3K/AKT signaling pathway is associated with cholangiocarcinoma metastasis and PI3K/mTOR inhibition presents a possible therapeutic strategy. Tumor Biology 34, 3637–3648. https://doi.org/10.1007/s13277-013-0945-2
[45] Xu X, Kobayashi S, Qiao W, Li C, Xiao C, Radaeva S, Stiles, B., Wang, R. H., Ohara, N., Yoshino, T., LeRoith, D., Torbenson, M. S., Gores, G. J., Wu, H., Gao, B., Deng, C., 2006. Induction of intrahepatic cholangiocellular carcinoma by liver- specific disruption of Smad4 and Pten in mice. The Journal of Clinical Investigation 116 (7): 1843–1852.
[46] Chung, J. Y., Hong, S. M., Choi, B. Y., Cho, H., Yu, E., Hewitt, S. M., 2009. The expression of phospho-AKT, phospho-mTOR, and PTEN in extrahepatic cholangiocarcinoma. Clinical Cancer Research 15 (2): 660–667.
[47] Zirlik, K., Veelken, H., 2018. Idelalisib. Small Molecules in Hematology 212, 243–264. https://doi.org/10.1007/978-3-319-91439-8_12
[48] Ragon, B. K., Kantarjian, H., Jabbour, E., Ravandi, F., Cortes, J., Borthakur, G., DeBose, L., Zeng, Z., Schneider, H., Pemmaraju, N., Garcia-Manero, G., Kornblau, S., Wierda, W., Burger, J., DiNardo, C. D., Andreeff, M., Konopleva, M., Daver, N., 2017. Buparlisib, a PI3K inhibitor, demonstrates acceptable tolerability and preliminary activity in a phase I trial of patients with advanced leukemias. American Journal of Hematology 92 (1), 7–11. https://doi.org/10.1002/ajh.24568
[49] Hedges, C. P., Boix, J., Jaiswal, J. K., Shetty, B., Shepherd, P. R., Merry, T. L., 2021. Efficacy of providing the PI3K p110α inhibitor BYL719 (Alpelisib) to middle-aged mice in their diet. Biomolecules 11 (2), 150. https://doi.org/10.3390/biom11020150
[50] Sarker, D., Ang, J. E., Baird, R., Kristeleit, R., Shah, K., Moreno, V., Clarke, P. A., Raynaud, F. I., Levy, G., Ware, J. A., Mazina, K., Lin, R., Wu, J., Fredrickson, J., Spoerke, J. M., Lackner, M. R., Yan, Y., Friedman, L. S., Kaye, S. B., Derynck, M. K., Workman, P., de Bono, J. S., 2015. First-in-human phase I study of pictilisib (GDC-0941), a potent pan–class I Phosphatidylinositol-3-Kinase (PI3K) inhibitor, in patients with advanced solid tumors. Clinical Cancer Research 21 (1), 77–86. https://doi.org/10.1158/1078-0432.CCR-14-0947
[51] Takahashi, R. H., Malhi, V., Liederer, B. M., Cho, S., Deng, Y., Dean, B., Nugteren, J., Yost, E., Al-Sayah, M. A., Sane, R., Kshirsagar, S., Ma, S., Musib, L., 2023. The absolute bioavailability and absorption, metabolism, and excretion of ipatasertib, a potent and highly selective Akt inhibitor. Drug Metabolism and Disposition. https://doi.org/10.1124/dmd.122.001175
[52] Richardson, P. G., Eng, C., Kolesar, J., Hideshima, T., Anderson, K. C., 2012. Perifosine, an oral, anti-cancer agent and inhibitor of the Akt pathway: mechanistic actions, pharmacodynamics, pharmacokinetics, and clinical activity. Expert Opinion on Drug Metabolism & Toxicology 8 (5), 623–633. https://doi.org/10.1517/17425255.2012.681376
[53] Motzer, R. J., Escudier, B., Oudard, S., Hutson, T. E., Porta, C., Bracarda, S., Grünwald, V., Thompson, J. A., Figlin, R. A., Hollaender, N., Urbanowitz, G., Berg, W. J., Kay, A., Lebwohl, D., Ravaud, A., 2008. Efficacy of everolimus in advanced renal cell carcinoma: a double-blind, randomised, placebo-controlled phase III trial. The Lancet 372 (9637), 449–456. https://doi.org/10.1016/S0140-6736(08)61039-9
[54] O’Reilly, T., McSheehy, P. M. J., 2010. Biomarker development for the clinical activity of the mTOR inhibitor everolimus (RAD001): Processes, limitations, and further proposals. Translational Oncology 3 (2), 65–79. https://doi.org/10.1593/tlo.09277
[55] Chan, S., Scheulen, M. E., Johnston, S., Mross, K., Cardoso, F., Dittrich, C., Eiermann, W., Hess, D., Morant, R., Semiglazov, V., Borner, M., Salzberg, M., Ostapenko, V., Illiger, H.-J., Behringer, D., Bardy-Bouxin, N., Boni, J., Kong, S., Cincotta, M., Moore, L., 2005. Phase II study of Temsirolimus (CCI-779), a novel inhibitor of mTOR, in heavily pretreated patients with locally advanced or metastatic breast cancer. Journal of Clinical Oncology 23 (23), 5314–5322. https://doi.org/10.1200/JCO.2005.66.130
Cite This Article
  • APA Style

    Teng Fei Zhang, Hai Tao Lv, Yue Ting Jin, Wen Bin Wang, Hai Bo Wu, et al. (2023). Roles of the PI3K/AKT Signalling Pathway in Cholangiocarcinoma: A Mini Review. Science Frontiers, 4(3), 40-47. https://doi.org/10.11648/j.sf.20230403.12

    Copy | Download

    ACS Style

    Teng Fei Zhang; Hai Tao Lv; Yue Ting Jin; Wen Bin Wang; Hai Bo Wu, et al. Roles of the PI3K/AKT Signalling Pathway in Cholangiocarcinoma: A Mini Review. Sci. Front. 2023, 4(3), 40-47. doi: 10.11648/j.sf.20230403.12

    Copy | Download

    AMA Style

    Teng Fei Zhang, Hai Tao Lv, Yue Ting Jin, Wen Bin Wang, Hai Bo Wu, et al. Roles of the PI3K/AKT Signalling Pathway in Cholangiocarcinoma: A Mini Review. Sci Front. 2023;4(3):40-47. doi: 10.11648/j.sf.20230403.12

    Copy | Download

  • @article{10.11648/j.sf.20230403.12,
      author = {Teng Fei Zhang and Hai Tao Lv and Yue Ting Jin and Wen Bin Wang and Hai Bo Wu and Qiu Sheng Li and Peng Xiang Liu and Zi Qiang Wu and Yao Zheng Zhang},
      title = {Roles of the PI3K/AKT Signalling Pathway in Cholangiocarcinoma: A Mini Review},
      journal = {Science Frontiers},
      volume = {4},
      number = {3},
      pages = {40-47},
      doi = {10.11648/j.sf.20230403.12},
      url = {https://doi.org/10.11648/j.sf.20230403.12},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.sf.20230403.12},
      abstract = {Cholangiocarcinoma (CCA) is a diverse group of malignant tumors originating from the bile duct and other sites in the biliary tree. Effective treatment methods for CCA are currently lacking. Therefore, understanding the genetic mechanisms and therapeutic targets is crucial for improving treatment outcomes and survival rates. This review focuses on the key roles of the phosphatidylinositol 3-kinase (PI3K) signaling pathway in CCA tumor initiation and progression. Potential therapeutic approaches based on this pathway were also discussed. Results showed increased activation of the PI3K/AKT pathway in CCA tissues and proteins like p85α, mTOR, and GSK-3β were upregulated with tumor metastasis. However, PTEN expression, a tumor suppressor protein, was suppressed via loss or phosphorylation. The emergence of certain drugs aimed at the dysfunctional PI3K/AKT pathway shows potential for enhancing Cholangiocarcinoma treatment. For example. dual inhibitors such as NVP-BEZ235 can effectively inhibit CCA cell growth and phosphorylation of AKT and mTOR. This suggests that the use of inhibitors to alter this pathway could potentially enhance survival rates and further the progress of Cholangiocarcinoma drug development.},
     year = {2023}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Roles of the PI3K/AKT Signalling Pathway in Cholangiocarcinoma: A Mini Review
    AU  - Teng Fei Zhang
    AU  - Hai Tao Lv
    AU  - Yue Ting Jin
    AU  - Wen Bin Wang
    AU  - Hai Bo Wu
    AU  - Qiu Sheng Li
    AU  - Peng Xiang Liu
    AU  - Zi Qiang Wu
    AU  - Yao Zheng Zhang
    Y1  - 2023/08/31
    PY  - 2023
    N1  - https://doi.org/10.11648/j.sf.20230403.12
    DO  - 10.11648/j.sf.20230403.12
    T2  - Science Frontiers
    JF  - Science Frontiers
    JO  - Science Frontiers
    SP  - 40
    EP  - 47
    PB  - Science Publishing Group
    SN  - 2994-7030
    UR  - https://doi.org/10.11648/j.sf.20230403.12
    AB  - Cholangiocarcinoma (CCA) is a diverse group of malignant tumors originating from the bile duct and other sites in the biliary tree. Effective treatment methods for CCA are currently lacking. Therefore, understanding the genetic mechanisms and therapeutic targets is crucial for improving treatment outcomes and survival rates. This review focuses on the key roles of the phosphatidylinositol 3-kinase (PI3K) signaling pathway in CCA tumor initiation and progression. Potential therapeutic approaches based on this pathway were also discussed. Results showed increased activation of the PI3K/AKT pathway in CCA tissues and proteins like p85α, mTOR, and GSK-3β were upregulated with tumor metastasis. However, PTEN expression, a tumor suppressor protein, was suppressed via loss or phosphorylation. The emergence of certain drugs aimed at the dysfunctional PI3K/AKT pathway shows potential for enhancing Cholangiocarcinoma treatment. For example. dual inhibitors such as NVP-BEZ235 can effectively inhibit CCA cell growth and phosphorylation of AKT and mTOR. This suggests that the use of inhibitors to alter this pathway could potentially enhance survival rates and further the progress of Cholangiocarcinoma drug development.
    VL  - 4
    IS  - 3
    ER  - 

    Copy | Download

Author Information
  • Department of Hepatobiliary Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China

  • Department of Hepatobiliary Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China

  • Hebei Wangdao Pharmaceutical Technology Co., Ltd., Shijiazhuang, China

  • Department of Hepatobiliary Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China

  • Department of Hepatobiliary Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China

  • Department of Hepatobiliary Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China

  • Department of Hepatobiliary Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China

  • Department of Hepatobiliary Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China

  • Department of Hepatobiliary Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China

  • Sections