| Peer-Reviewed

Biodegradation of Textile Dyes by Radish Peroxidase (Raphanus sativus L.) Immobilized on Coconut Fiber

Received: 3 October 2022    Accepted: 31 October 2022    Published: 30 January 2023
Views:       Downloads:
Abstract

The importance of biodegradation in the context of dye removal is presented as a function of the need to use enzyme immobilization as a key technology for effluent treatment. Immobilization is based on the need to improve the stability and recyclability of the biocatalyst in relation to the free enzyme, in addition to a lower risk of product contamination as an advantage. The present study aims to evaluate the biodegradation of textile dyes using radish peroxidase immobilized by physical adsorption method on coconut fiber, as well as its characterization in relation to pH, temperature, and infrared spectrum (FTIR). The discoloration efficiency (DE) of free radish peroxidase (FRP) and immobilized (IRP) on the dyes methylene blue (MB) and navy blue (NB) was determined by biodegradation assays conducted at 200 rpm for 1 h at 25°C. The evaluated parameters were: effect of pH, amount of biocatalyst (FRP for MB and NB; IRP for MB and NB), molar ratio dye: H2O2 (hydrogen peroxide) and contact time. Also, operational stability was analyzed. Under optimized conditions [pH 8.0 (MB) and pH 5.0 (NB), amount of biocatalyst to MB: 40.40 U (FRP) and 3.25 × 10−3 U (IRP), and to NB: 13.45 U (FRP) and 26.25 × 10−3 U (IRP), and molar ratio dye: H2O2 to IRP: MB (1:0.5 mmol/L) and NB (1:10 mmol/L)], the maximum DE for IRP was 86% for MB and 61% for NB. IRP can be reused ten times for MB and two times for NB. Thus, the results confirm the potential use of peroxidase of radish immobilized on coconut fiber in the biodegradation of dyes.

Published in Chemical and Biomolecular Engineering (Volume 7, Issue 4)
DOI 10.11648/j.cbe.20220704.11
Page(s) 54-68
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2024. Published by Science Publishing Group

Keywords

Radish, Coconut Fiber, Immobilization, Biodegradation, Textile Dyes

References
[1] Morsi, R., Al-Maqdi, K. A., Bilal, M., Iqbal, H., Khaleel, A., Shah, I., & Ashraf, S. S. (2021). Immobilized soybean peroxidase hybrid biocatalysts for efficient degradation of various emerging pollutants. Biomolecules, 11 (6), 904. doi: 10.3390/biom11060904.
[2] Veitch, N. C. (2004). Horseradish peroxidase: a modern view of a classic enzyme. Phytochemical, 65, 249–259. doi: 10.1016/j.phytochem.2003.10.022.
[3] Lopes, L. C., Brandão, I. V., Sánchez, O. C., Franceschi, E., Borges, G., Dariva, C., & Fricks, A. T. (2020). Online monitoring of horseradish peroxidase structural changes by Near Infrared (NIR) Spectroscopy. Process Biochemistry, 90, 97-101. doi: 10.1016/j.procbio.2019.11.004.
[4] Lopes, L. C., Barreto, M. T, Goncalves, K. M., Alvarez, H. M., Heredia, M. F., De Souza, R. O. M., & Fricks, A. T. (2015). Stability and structural changes of horseradish peroxidase: Microwave versus conventional heating treatment. Enzyme and Microbial Technology, 69, 10–18. doi: 10.1016/j.enzmictec.2014.11.002.
[5] Melo, N. M., Lopes, L. C., Dariva, C., Girardi, J. S., Lucchese, A. M., Alvarez, H. M., & Fricks, A. T. (2015). Bioepoxidation of isosafrol catalyzed by radish and turnip peroxidases. African Journal of Biotechnology, 14, 1074–1080. doi: 10.5897/AJB2014.14342.
[6] Wang, L., Burhenne, K., Kristensen, B. K., & Rasmussen, S. K. (2004). Purification and cloning of a Chinese red radish peroxidase that metabolise pelargonidin and forms a gene family in Brassicaceae. Gene, 343, 323–335. doi: 10.1016/j.gene.2004.09.018.
[7] Barbosa, G. S. D. S., Oliveira, M. E. P., Dos Santos, A. B. S., Sánchez, O. C., Soares, C. M. F., & Fricks, A. T. (2020). Immobilization of low-cost alternative vegetable peroxidase (Raphanus sativus L. peroxidase): Choice of support/technique and characterization. Molecules, 25 (16), 3668. doi: 10.3390/molecules25163668.
[8] Quan, X., Zhang, X., & Xu, H. (2015). In-situ formation and immobilization of biogenic nanopalladium into anaerobic granular sludge enhances azo dyes degradation. Water Research. 78, 74–83. doi: 10.1016/j.watres.2015.03.024.
[9] Skoronski, E., Fernandes, M., Júnior, A. F., Soares, C. H. L., & João, J. J. (2014). Immobilization of laccase (Aspergillus sp.) on chitosan and its application in the bioconversion of phenols in packed bed reactors. Química Nova, 37, 215–220. doi: 10.5935/0100-4042.20140037.
[10] Rathner, R., Petz, S., Tasnádi, G., Koller, M., & Ribitsch, V. (2017). Monitoring the kinetics of biocatalytic removal of the endocrine disrupting compound 17α-ethinylestradiol from differently polluted wastewater bodies. Journal of Environmental Chemical Engineering, 5 (2), 1920-1926. doi: 10.1016/j.jece.2017.03.034.
[11] Zhang, Z., Lai, J., Wu, K., Huang, X., Guo, S., Zhang, L., & Liu, J. (2018). Peroxidase-catalyzed chemiluminescence system and its application in immunoassay. Talanta, 180. doi: 10.1016/j.talanta.2017.12.024.
[12] Kandil, O. M., El-Hakim, A. E., Gad, A. A. M., Abu El-Ezz, N. M., Mahmoud, M. S., Hendawy, S. H., & Salama, D. B. (2020). Camel hydatidosis diagnostic kit: Optimization of turnip and horseradish peroxidase conjugates using glutaraldehyde method. Journal of parasitic diseases, 44 (1), 230-238. doi: 10.1007/s12639-019-01186-4.
[13] Ramanavivius, A., Kausaite-minkstimiene, A., Morkvenaite-vilkonciene, I., Genys, P., Mikhailova, R., Semashko, T., & Ramanaviciene, A. (2015). Biofuel cell based on glucose oxidase from Penicillium funiculosum 46.1 and horseradish peroxidase. Chemical Engineering Journal, 264, 165–173. doi: 10.1016/j.cej.2014.11.011.
[14] Wang, Y., Wang, Z., Rui, Y., & Li, M. (2015). Horseradish peroxidase immobilization on carbon nanodots/CoFe layered double hydroxides: direct electrochemistry and hydrogen peroxide sensing. Biosensors & Bioelectronics, 64, 57–62. doi: 10.1016/j.bios.2014.08.054.
[15] Centeno, D. A., Solano, X. H., & Castillo, J. J. (2017). A new peroxidase from leaves of guinea grass (Panicum maximum): A potential biocatalyst to build amperometric biosensors. Bioelectrochemistry, 116, 33-38. doi: 10.1016/j.bioelechem.2017.03.005.
[16] Wang, Q., Xue, R., Guo, H., Wei, Y., & Yang, W. (2018). A facile horseradish peroxidase electrochemical biosensor with surface molecular imprinting based on polyaniline nanotubes. Journal of Electroanalytical Chemistry, 817, 184–194. doi: 10.1016/j.jelechem.2018.04.013.
[17] Kurnik, K., Treder, K., Skorupa-Kłaput, M., & Tretyn, A., Tyburski, J. (2015). Removal of phenol from synthetic and industrial wastewater by potato pulp peroxidases. Water, Air, & Soil Pollution, 226 (8), 1-19. doi: 10.1007/s11270-015-2517-0.
[18] Cheng, J., Yu, S. M., & Zuo, P. (2006). Horseradish peroxidase immobilized on aluminum-pillared interlayered clay for the catalytic oxidation of phenolic wastewater. Water Research, 40, 283–290. doi: 10.1016/j.watres.2005.11.017.
[19] Garg, S., Kumar, P., Singh, S., Yadav, A., Dumée, L. F., Sharma, R. S., & Mishra, V. (2020). Prosopis juliflora peroxidases for phenol remediation from industrial wastewater—An innovative practice for environmental sustainability. Environmental Technology & Innovation, 19, 100865. doi: 10.1016/j.eti.2020.100865.
[20] Melo, M. N., Pereira, F. M., Rocha, M. A., Ribeiro, J. G., Diz, F. M., Monteiro, W. F., Ligabue, R. A., Severino, P., & Fricks, A. T. (2020). Immobilization and characterization of Horseradish Peroxidase into Chitosan and Chitosan/PEG nanoparticles: A comparative study. Process Biochemistry, 98, 160-171. doi: 10.1016/j.procbio.2020.08.007.
[21] Vujčić, Z., Janović, B., Lončar, N., Margetić, A., Božić, N., Dojnov, B., & Vujčić, M. (2015). Exploitation of neglected horseradish peroxidase izoenzymes for dye decolorization. International Biodeterioration and Biodegradation, 97, 124–127. doi: 10.1016/j.ibiod.2014.10.007.
[22] Bilal, M., Rasheed T., Iqbal, H. M. N., Hu, H., Wang, W., & Zhang, X. (2018). Horseradish peroxidase immobilization by copolymerization into cross-linked polyacrylamide gel and its dye degradation and detoxification potential. International Journal of Biological Macromolecules, 113, 983–990. doi: 10.1016/j.ijbiomac.2018.02.062.
[23] Darwesh, O. M., Matter, I. A., & Eida, M. F. (2018). Development of peroxidase enzyme immobilized magnetic nanoparticles for bioremediation of textile wastewater dye. Journal of Environmental Chemical Engineering, 7, 102805. doi: 10.1016/j.jece.2018.11.049.
[24] Chaudhari, A. U., Paulo, D., Dhotre, D., & Kodam, K. M. (2017). Effective biotransformation and detoxification of anthraquinone dye reactive blue 4 by using aerobic bacterial granules. Water Research, 122, 603–613. doi: 10.1016/j.watres.2017.06.005.
[25] Fritzke, W., Salla, E. G., Bagatini, M. D., Bonadiman, B. D. S. R., Skoronski, E., Moroni, L. S., & Kempka, A. P. (2020). Peroxidase of Cedrela fissilis leaves: Biochemical characterization and toxicity of enzymatically decolored solution of textile dye Brilliant Sky-Blue G. Biocatalysis and Agricultural Biotechnology, 24, 101553. doi: 10.1016/j.bcab.2020.101553.
[26] Barragán-Escandón, E., Zalamea-León, E., Terrados-Cepeda, J., & Vanegas-Peralta, P. (2019). Factores que influyen en la selección de energías renovables en la ciudad. EURE (Santiago), 45 (134), 259-277. doi: 10.4067/S0250-71612019000100259.
[27] Rane, N. R., Patil, S. M., Chandanshive, V. V., Kadam, S. K., Khandare, R. V., Jadhav, J. P., & Govindwar, S. P. (2016). Ipomoea hederifolia rooted soil bed and Ipomoea aquatica rhizofiltration coupled phytoreactors for efficient treatment of textile wastewater. Water Research. 96, 1–11. doi: 10.1016/j.watres.2016.03.029.
[28] Boros, Z., Weiser, D., Márkus, M., Abaháziová, E., Magyar, Á., Tomin, A., Koczka, B., Kovács, P., & Poppe, L. (2012). Hydrophobic adsorption and covalent immobilization of Candida antarctica lipase B on mixed-function-grafted silica gel supports for continuous-flow biotransformations. Process Biochemistry, 48. doi: 10.1016/j.procbio.2013.05.002.
[29] Ji, C., Nguyen, L. N., Hou, J., Hai F. I., & Chen, V. (2017). Direct immobilization of laccase on titania nanoparticles from crude enzyme extracts of P. ostreatus culture for micro-pollutant degradation. Separation and Purification Technology, 178, 215–223. doi: 10.1016/j.seppur.2017.01.043.
[30] Santos, J. C. S. D., Barbosa, O., Ortiz, C., Berenguer-Murcia, A., Rodrigues, R. C., & Fernandez-Lafuente, R. (2015). Importance of the support properties for immobilization or purification of enzymes. ChemCatChem, 7 (16), 2413-2432. doi: 10.1002/cctc.201500310.
[31] Boudrant, J., Woodley, J. M., & Fernandez-Lafuente, R. (2020). Parameters necessary to define an immobilized enzyme preparation. Process Biochemistry, 90, 66-80. doi: 10.1016/j.procbio.2019.11.026.
[32] Sheldon, R. A., & Pelt, S. V. (2013). Enzyme immobilisation in biocatalysis: why, what and how. Royal Society of Chemistry, 42, 6223–6235. doi: 10.1039/c3cs60075k.
[33] Mahmoodi, N. M., Arabloo, M., & Abdi, J. (2014). Laccase immobilized manganese ferrite nanoparticle: Synthesis and LSSVM intelligent modeling of decolorization. Water Research, 67, 216–226. doi: 10.1016/j.watres.2014.09.011.
[34] Voběrková, S., Solčcány, V., Všanská, M., & Adam, V. (2018). Immobilization of ligninolytic enzymes from white-rot fungi in cross-linked aggregates. Chemosphere, 202, 694–707. doi: 10.1016/j.chemosphere.2018.03.088.
[35] Salvi, H. M., & Yadav, G. D. (2019). Surface functionalization of SBA-15 for immobilization of lipase and its application in synthesis of alkyl levulinates: Optimization and kinetics. Biocatalysis and Agricultural Biotechnology, 18, 101038. doi: 10.1016/j.bcab.2019.101038.
[36] Mendes, A. A., Oliveira, P. C., & De Castro, H. F. (2013). Properties and biotechnological applications of porcine pancreatic lipase. Journal of Molecular Catalysis B: Enzymatic, 78, 119–134. doi: 10.1016/j.molcatb.2012.03.004.
[37] Liu, J., Ma, R. T., & Shi, Y. P. (2020). Recent advances on support materials for lipase immobilization and applicability as biocatalysts in inhibitors screening methods-A review. Analytica Chimica Acta, 1101, 9-22. doi: 10.1016/j.aca.2019.11.073.
[38] Zdarta, J., Meyer, A. S., Jesionowski, T., & Pinelo, M. (2018). A general overview of support materials for enzyme immobilization: characteristics, properties, practical utility. Catalysts, 8 (2), 92. doi: 10.3390/catal8020092.
[39] Cipolatti, E. P., Manoel, E. A., Fernandez-Lafuente, R., & Freire, D. M. G. (2017). Support engineering: relation between development of new supports for immobilization of lipases and their applications. Biotechnology Research & Innovation, 1 (1), 26-34. doi: 10.1016/j.biori.2017.01.004.
[40] Bilal, M., Rasheed, T., Zhao, Y., Iqbal, H. M., & Cui, J. (2018). Smart” chemistry and its application in peroxidase immobilization using different support materials. International Journal of Biological Macromolecules, 119, 278-290. doi: 10.1016/j.ijbiomac.2018.07.134.
[41] Torres, J. A., Silva, M. C., Lopes, J. H., Nogueira, A. E., Nogueira, F. G. E., & Corrêa, A. D. (2018). Development of a reusable and sustainable biocatalyst by immobilization of soybean peroxidase onto magnetic adsorbent. International Journal of Biological Macromolecules, 114, 1279–1287. doi: 10.1016/j.ijbiomac.2018.03.136.
[42] Queiroz, M. L. B., Conceição, K. C. D., Melo, M. N., Sánchez, O. C., Alvarez, H. M., Soares, C. M., & Fricks, A. T. (2018). Imobilização de peroxidase de raiz forte em bagaço de cana-de-açúcar. Química Nova, 41, 1019-1024. doi: 10.21577/0100-4042.20170279.
[43] Felisardo, R. J., Luque, A. M., Silva, Q. S., Soares, C. M., Fricks, A. T., Lima, A. S., & Cavalcanti, E. B. (2020). Biosensor of horseradish peroxidase immobilized onto self-assembled monolayers: Optimization of the deposition enzyme concentration. Journal of Electroanalytical Chemistry, 879, 114784. doi: 10.1016/j.jelechem.2020.114784.
[44] Rambo, M. K. D., Alexandre, G. P., Rambo, M. C. D., Alves, A. R., Garcia, W. T., & Baruque, E. (2015). Characterization of biomasses from the north and northeast regions of Brazil for processes in biorefineries. Food Science & Technology, 35, 605-611. doi: 10.1590/1678-457X.6704.
[45] Martins, A. P., & Sanches, R. A. (2019). Assessment of coconut fibers for textile applications. Matéria (Rio de Janeiro), 24.
[46] Bezerra, T. M. S., Bassan, J. C., Santos, V. T. O., Ferraz, A., & Monti, R. (2015). Covalent immobilization of laccase in green coconut fiber and use in clarification of apple juice. Process Biochemistry. 50, 417–423. doi: 10.1016/j.procbio.2014.12.009.
[47] Machado, B. A. S., Reis, J. H. O., Silva, J. B., Cruz, L. S., Nunes, I. L., Pereira, F. V., & Druzian, J. I. (2014). Obtaining of green coconut fiber nanocellulose and incorporation in biodegradable starch films plasticized with glycerol. Química Nova, 37, 1275–1282. doi: 10.5935/0100-4042.20140220.
[48] Cristóvão, R. O., Tavares, A. P. M., Brígida, A. I., Loureiro, J. M., Boaventura, R. A. R., Macedo, E. A., & Coelho, M. A. S. Z. (2011). Immobilization of commercial laccase onto green coconut fiber by adsorption and its application for reactive textile dyes degradation. Journal of Molecular Catalysis B: Enzymatic, 72, 6–12. doi: 10.1016/j.molcatb.2011.04.014.
[49] Shalwan, A., & Yousif, B. F. (2013). In state of art: mechanical and tribological behaviour of polymeric composites based on natural fibres. Materials and Design, 48, 14–24. doi: 10.1016/j.matdes.2012.07.014.
[50] Tian, S. Q., Zhao, R. Y., & Chen, Z. C. (2018). Review of the pretreatment and bioconversion of lignocellulosic biomass from wheat straw materials. Renewable and Sustainable Energy Reviews, 91, 483–489. doi: 10.1016/j.rser.2018.03.113.
[51] Almeida, T. M., Bispo, M. D., Cardoso, A. R. T., Migliorini, M. V., Schena, T., Campos, M. C. V., Machado, M. E., López, J. A., Krause, L. C., & Caramão, E. B. (2017). Preliminary Studies of Bio-oil from Fast Pyrolysis of Coconut Fibers. Journal of Agricultural and Food Chemistry, 61, 6812–6821. doi: 10.1021/jf401379s.
[52] Arsyad, M. (2017). Effect of Alkali Treatment on the Coconut Fiber Surface. Journal of Engineering and Applied Science, 12, 1870–1975. doi: 10.1088/1757-899X/368/1/012048.
[53] Agbor, V. B., Cicek, N., Sparling, R., Berlin, A., & Levin, D. B. (2011). Biomass pretreatment: fundamentals toward application. Biotechnology Advances, 29, 675–685. doi: 10.1016/j.biotechadv.2011.05.005.
[54] Brígida, A. I. S., Calado, V. M. A., Gonçalves, L. R. B., & Coelho, M. A. S. (2010). Effect of chemical treatments on properties of green coconut fiber. Carbohydrate Polymers, 79, 832–838. doi: 10.1016/j.carbpol.2009.10.005.
[55] Fricks, A. T., Souza, D. P. B., Oestreicher, E. G., Antunes, O. A. C., Girardi, J. S., Oliveira, D., & Dariva, C. (2006). Evaluation of radish (Raphanus sativus L.) peroxidase activity after high-pressure treatment with carbon dioxide. Journal of Supercritical Fluids, 38, 347–353. doi: 10.1016/j.supflu.2005.11.019.
[56] Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254. doi: 10.1016/0003-2697(76)90527-3.
[57] Santos, D. T., Sarrouh, B. F., Rivaldi, J. D., Converti, A., & Silva, S. S. (2008). Use of sugarcane bagasse as biomaterial for cell immobilization for xylitol production. Journal of Food Engineering, 86, 542–548. doi: 10.1016/j.jfoodeng.2007.11.004.
[58] Hirata, T., Izumi, S., Ogura, M., & Yawata, T. (1998). Epoxidation of styrenes with the peroxidase from the cultured cells of Nicotiana tabacum, Tetrahedron, 54, 15993–16003. doi: 10.1016/S0040-4020(98)01007-2.
[59] Chagas, P. M. B., Torres, J. A., Silva, M. C., & Corrêa, A. D. (2015). Immobilized soybean hull peroxidase for the oxidation of phenolic compounds in coffee processing wastewater. International Journal of Biological Macromolecules, 81, 568–575. doi: 10.1016/j.ijbiomac.2015.08.061.
[60] Pereira, A. R., Da Costa, R. S., Yokoyama, L., Alhadeff, E. M., & Teixeira, L. A. C. (2014). Evaluation of textile dye degradation due to the combined action of enzyme horseradish peroxidase and hydrogen peroxide. Applied Biochemistry and Biotechnology, doi: 10.1007/s12010-014-1222-6.
[61] Celebi, M., Altikatoglu, M., Akdeste, Z. M., & Yıldırım, H. (2013). Determination of decolorization properties of reactive blue 19 dye using horseradish peroxidase enzyme. Turkish Journal of Biochemistry, 37, 200–206. doi: 10.5505/tjb.2013.96636.
[62] Fricks, A. T., Dariva, C., Alvarez, H. M., Santos, A. F., Fortuny, M., Queiroz, M. L. B., & Antunes, O. A. C. (2010). Compressed propane as a new and fast method of pre-purification of radish (Raphanus sativus L.) peroxidase. Journal of Supercritical Fluids, 54, 153–158. doi: 10.1016/j.supflu.2010.04.012.
[63] Dos Santos, J. C. C., Da Silva, C. H., Dos Santos, C. S., Silva, C. D. S., Melo, E. B., & Barros, A. C. (2014). Analysis of growth and the radish crop evapotranspiration under different water depths. Revista Verde Agroecologia Desenvolvimento Sustentavel. 9, 151–156. https://www.gvaa.com.br/revista/index.php/RVADS/article/view/2365/2077
[64] Mohamed, S. A., Al-Malkim, A. L., Kumosani, T. A., & El-Shishtawy, R. M. (2013). Horseradish peroxidase and chitosan: Activation, immobilization and comparative results. International Journal of Biological Macromolecules, 60, 295–300. doi: 10.1016/j.ijbiomac.2013.06.003.
[65] Mohammadi, M., Heshmati, M. K., Sarabandi, K., Fathi, M., Lim, L. T., & Hamishehkar, H. (2019). Activated alginate-montmorillonite beads as an efficient carrier for pectinase immobilization. International Journal of Biological Macromolecules, 137, 253-260. doi: 10.1016/j.ijbiomac.2019.06.236.
[66] Al-Bagmi, M. S., Khan, M. S., Ismael, M. A., Al-Senaidy, A. M., Bacha, A. B., Husain, F. M., & Alamery, S. F. (2019). An efficient methodology for the purification of date palm peroxidase: Stability comparison with horseradish peroxidase (HRP). Saudi Journal of Biological Sciences, 26 (2), 301-307. doi: 10.1016/j.sjbs.2018.04.002.
[67] Malani, R. S., Khanna, S., & Moholkar, V. S. (2013). Sonoenzymatic decolourization of an azo dye employing immobilized horse radish peroxidase (HRP): A mechanistic study. Journal of Hazardous Materials, 256-257, 90–97. doi: 10.1016/j.jhazmat.2013.04.023.
[68] Amiour, S. D., & Hambaba, L. (2016). Effect of pH, temperature and some chemicals on polyphenoloxidase and peroxidase activities in harvested Deglet Nour and Ghars dates. Postharvest Biology and Technology, 111, 77-82. doi: 10.1016/j.postharvbio.2015.07.027.
[69] Jamal, F., Singh, S., Qidwai, T., Singh, D., Pandey, P. K., Pandey, G. C., & Khan, M. Y. (2013). Catalytic activity of soluble versus immobilized cauliflower (Brassica oleracea) bud peroxidase-concanavalin A complex and its application in dye color removal. Biocatalysis and Agricultural Biotechnology, 2, 311–321. doi: 10.1016/j.bcab.2013.05.005.
[70] Mohamed, S. A., Al-Harbi, M. H., Almulaiky, Y. Q., Ibrahim, I. H., & El-Shishtawy, R. M. (2017). Immobilization of horseradish peroxidase on Fe3O4 magnetic nanoparticles. Electronic Journal of Biotechnology, 27, 84-90. doi: 10.1016/j.ijbiomac.2013.06.003.
[71] Goyeneche, R., Di Scala, K., & Roura, S. (2013). Biochemical characterization and thermal inactivation of polyphenol oxidase from radish (Raphanus sativus var. sativus). Food Science and Technology, 54, 57–62. doi: 10.1016/j.lwt.2013.04.014.
[72] CONAMA, Resolution Nº 430, of May 13, 2011 [Resolução no 430, de 13 de maio de 2011]. Dispõe sobre as condições e padrões de lançamento de efluentes, complementa e altera a Resolução, 357, http://http://www2.mma.gov.br/port/conama/legiabre.cfm?codlegi=646 (accessed 06 may 2022).
[73] Bansal, N., & Kanwar, S. S. (2013). Peroxidase(s) in environment protection, Scientific World Journal, doi: 10.1155/2013/714639.
[74] Silva, M. C., Corrêa, A. D., Torres, J. A., & Amorim, M. T. S. P. (2012). Discoloration of industrial dyes and simulated textile effluents by turnip peroxidase (Brassica campestre). Química Nova, 35, 889–894. doi: 10.1590/S0100-40422012000500005.
[75] Scotti, R., Lima, E. C., Benvenutti, E. V., Piatnicki, C. M. S., Dias, S. L. P., Gushikem, Y., & Kubota, L. T. (2006). Methylene blue immobilized on cellulose/TiO2 and SiO2/TiO2: electrochemical properties and factorial planning. Química Nova, 29, 208–212. doi: 10.1590/S0100-40422006000200006.
[76] Ali, M., Husain, Q., Alam, N., & Ahmad, M. (2018). Nano-peroxidase fabrication on cation exchanger nanocomposite: Augmenting catalytic efficiency and stability for the decolorization and detoxification of Methyl Violet 6B dye. Separation and Purification Technology, 203, 20–28. doi: 10.1016/j.seppur.2018.04.012.
[77] Dehvari, M., Ghaneian, M. T., Ebrahimi, A., Jamshidi, B., & Mootab, M. (2017). Removal of reactive blue 19 dyes from textile wastewater by pomegranate seed powder: Isotherm and kinetic studies. International Journal of Environmental Health Engineering, 5, 5. doi: 10.4103/2277-9183.179204.
[78] Champagne, P. P., & Ramsay, J. A. (2007). Reactive blue 19 decolouration by laccase immobilized on silica beads. Applied Microbiology and Biotechnology, 77, 819–823. doi: 10.1007/s00253-007-1208-1.
[79] Zhu, X., Zhou, T., Wu, X., Cai, Y., Yao, D., Xie, C., & Liu, D. (2011). Covalent immobilization of enzymes within micro-aqueous organic media. Journal of Molecular Catalysis B: Enzymatic, 72, 145–149. doi: 10.1016/j.molcatb.2011.05.012.
[80] Boucherit, N., Abouseoud, M., & Adour, L. (2013). Degradation of direct azo dye by Cucurbita pepo free and immobilized peroxidase. Journal of Environmental Sciences, 25, 1235–1244. doi: 10.1016/S1001-0742(12)60102-8.
[81] Forgiarini, E., & De Souza, A. A. U. (2007). Toxicity of textile dyes and their degradation by the enzyme horseradish peroxidase (HRP). Journal of Hazardous Materials, 147, 1073–1078. doi: 10.1016/j.jhazmat.2007.06.003.
[82] Satar, R., & Husain, Q. (2009). Applications of Celite-adsorbed white radish (Raphanus sativus L.) peroxidase in batch process and continuous reactor for the degradation of reactive dyes. Biochemical Engineering Journal, 46, 96–104. doi: 10.1016/j.bej.2009.04.012.
[83] Chiong, T., Lau, S. Y., Lek, Z. H., Koh, B. Y., & Danquah, M. K. (2016). Enzymatic treatment of methyl orange dye in synthetic wastewater by plant-based peroxidase enzymes. Journal of Environmental Chemical Engineering, 4, 2500–2509. doi: 10.1016/j.jece.2016.04.030.
[84] Vieira, I. C., Lupetti, K. O., & Fatibello-Filho, O. (2003). Determination of paramectol in pharmaceutical products using a carbon paste biosensor modified with crude extract of zucchini (Cucurbita pepo), [Determinação de paracetamol em produtos farmacêuticos usando um biossensor de pasta de carbono modificado com extrato bruto de abobrinha (Cucurbita pepo).] Química Nova, 26, 39–43. doi: 10.1590/S0100-40422003000100009.
[85] Miran, W., Nawaz, M., Jang, J., & Lee, D. S., (2017). Chlorinated phenol treatment and in situ hydrogen peroxide production in a sulfate-reducing bacteria enriched bioelectrochemical system. Water Research, 117, 198–206. doi: 10.1016/j.watres.2017.04.008.
[86] Mohan, S. V., Prasad, K. K., Rao, N. C., & Sarma, P. N. (2005). Acid azo dye degradation by free and immobilized horseradish peroxidase (HRP) catalyzed process. Chemosphere, 58, 1097–1105. doi: 10.1016/j.chemosphere.2004.09.070.
[87] Sun, H., Jin, X., Long, N., & Zhang, R. (2017). Improved biodegradation of synthetic azo dye by horseradish peroxidase cross-linked on nano-composite support, International Journal Biology Macromolecules 95, 1049–1055. doi: 10.1016/j.ijbiomac.2016.10.093.
[88] Lu, Q. L., Tang, L. R., Wang, S., Huang, B., Chen, Y. D., & Chen, X. R. (2014). An investigation on the characteristics of cellulose nanocrystals from Pennisetum sinese. Biomass Bioenergy, 70, 267–272. doi: 10.1016/j.biombioe.2014.09.012.
[89] Tavares, T. S., da Rocha, E. P., Esteves Nogueira, F. G., Torres, J. A., Silva, M. C., Kuca, K., & Ramalho, T. C. (2020). Δ-FeOOH as support for immobilization peroxidase: optimization via a chemometric approach. Molecules, 25 (2), 259. doi: 10.3390/molecules25020259.
[90] Cao, X., Yu, J., Zhang, Z., & Liu, S. (2012). Bioactivity of horseradish peroxidase entrapped in silica nanospheres. Biosensors & Bioelectronics, 35, 101–107. doi: 10.1016/j.bios.2012.02.027.
[91] Mothé, C., & De Miranda, I. (2009). Characterization of sugarcane and coconut fibers by thermal analysis and FTIR. Journal of Thermal Analysis and Calorimetry, 97 (2), 661-665. doi: 10.1007/s10973-009-0346-3.
[92] Thite, V. S., & Nerurkar, A. S. (2019). Valorization of sugarcane bagasse by chemical pretreatment and enzyme mediated deconstruction. Scientific reports, 9 (1), 1-14. doi: 10.1038/s41598-019-52347-7.
[93] Zhang, L., & Zhang, Q., Li, J. (2010). Direct electrochemistry and electrocatalysis of myoglobin covalently immobilized in mesopores cellular foams. Biosensors & Bioelectronics, 26, 846–849. doi: 10.1016/j.bios.2010.08.013.
[94] Prati, S., Milosevic, M., Sciutto, G., Bonacini, I., Kazarian, S. G., & Mazzeo, R. (2016). Analyses of trace amounts of dyes with a new enhanced sensitivity FTIR spectroscopic technique: MU-ATR (metal underlayer ATR spectroscopy). Analytica Chimica Acta, 941, 67–79. doi: 10.1016/j.aca.2016.09.005.
[95] Chagas, P. M. B., Torres, J. A., Silva, M. C., Nogueira, F. G. E., Santos, C. D., & Corrêa, A. D. (2014). Catalytic stability of turnip peroxidase in free and immobilized form on chitosan beads. International Journal of Current Microbiology and Applied Sciences, 3, 576–595. https://www.ijcmas.com/vol-3-11/Pricila%20Maria%20Batista%20Chagas,%20et%20al.pdf
[96] Da Silva, R. M., Gonçalves, L. R., & Rodrigues, S. (2020). Different strategies to co-immobilize dextransucrase and dextranase onto agarose-based supports: Operational stability study. International Journal of Biological Macromolecules, 156, 411-419. doi: 10.1016/j.ijbiomac.2020.04.077.
[97] Zhong, P., Zheng, L., Yang, Y., Zhou, Y., Liu, X., Yang, Q., & Ren, J. (2022). Piezoelectric sensing of glucose oxidase activity of Aspergillus niger spores pretreated by different methods. Food Chemistry, 370, 130901. doi: 10.1016/j.foodchem.2021.130901.
[98] Carvalho, T., Pereira, A. D. S., Bonomo, R. C., Franco, M., Finotelli, P. V., & Amaral, P. F. (2020). Simple physical adsorption technique to immobilize Yarrowia lipolytica lipase purified by different methods on magnetic nanoparticles: Adsorption isotherms and thermodynamic approach. International Journal of Biological Macromolecules, 160, 889-902. doi: 10.1016/j.ijbiomac.2020.05.174.
[99] Kharrat, N., Ali, Y. B., Marzouk, S., Gargouri, Y. T., & Karra-Châabouni, M. (2011). Immobilization of Rhizopus oryzae lipase on silica aerogels by adsorption: comparison with the free enzyme. Process Biochemistry, 46, 1083–1089. doi: 10.1016/j.procbio.2011.01.029.
[100] Xie, X., Luo, P., Han, J., Chen, T., Wang, Y., Cai, Y., & Liu, Q. (2019). Horseradish peroxidase immobilized on the magnetic composite microspheres for high catalytic ability and operational stability. Enzyme and Microbial Technology, 122, 26-35. doi: 10.1016/j.procbio.2011.01.029.
[101] Jiang, Y., Tang, W., Gao, J., Zhou, L., & He, Y. (2014). Immobilization of horseradish peroxidase in phospholipid-templated titania and its applications in phenolic compounds and dye removal. Enzyme and Microbial Technology, 55, 1–6. doi: 10.1016/j.enzmictec.2013.11.005.
Cite This Article
  • APA Style

    Kennedy Costa da Conceicao, Patrick Alan Dantas Araujo, Alvaro Silva Lima, Laiza Canielas Krause, Alini Tinoco Fricks, et al. (2023). Biodegradation of Textile Dyes by Radish Peroxidase (Raphanus sativus L.) Immobilized on Coconut Fiber. Chemical and Biomolecular Engineering, 7(4), 54-68. https://doi.org/10.11648/j.cbe.20220704.11

    Copy | Download

    ACS Style

    Kennedy Costa da Conceicao; Patrick Alan Dantas Araujo; Alvaro Silva Lima; Laiza Canielas Krause; Alini Tinoco Fricks, et al. Biodegradation of Textile Dyes by Radish Peroxidase (Raphanus sativus L.) Immobilized on Coconut Fiber. Chem. Biomol. Eng. 2023, 7(4), 54-68. doi: 10.11648/j.cbe.20220704.11

    Copy | Download

    AMA Style

    Kennedy Costa da Conceicao, Patrick Alan Dantas Araujo, Alvaro Silva Lima, Laiza Canielas Krause, Alini Tinoco Fricks, et al. Biodegradation of Textile Dyes by Radish Peroxidase (Raphanus sativus L.) Immobilized on Coconut Fiber. Chem Biomol Eng. 2023;7(4):54-68. doi: 10.11648/j.cbe.20220704.11

    Copy | Download

  • @article{10.11648/j.cbe.20220704.11,
      author = {Kennedy Costa da Conceicao and Patrick Alan Dantas Araujo and Alvaro Silva Lima and Laiza Canielas Krause and Alini Tinoco Fricks and Cleide Mara Farias Soares and Rebeca Yndira Cabrera-Padilla},
      title = {Biodegradation of Textile Dyes by Radish Peroxidase (Raphanus sativus L.) Immobilized on Coconut Fiber},
      journal = {Chemical and Biomolecular Engineering},
      volume = {7},
      number = {4},
      pages = {54-68},
      doi = {10.11648/j.cbe.20220704.11},
      url = {https://doi.org/10.11648/j.cbe.20220704.11},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.cbe.20220704.11},
      abstract = {The importance of biodegradation in the context of dye removal is presented as a function of the need to use enzyme immobilization as a key technology for effluent treatment. Immobilization is based on the need to improve the stability and recyclability of the biocatalyst in relation to the free enzyme, in addition to a lower risk of product contamination as an advantage. The present study aims to evaluate the biodegradation of textile dyes using radish peroxidase immobilized by physical adsorption method on coconut fiber, as well as its characterization in relation to pH, temperature, and infrared spectrum (FTIR). The discoloration efficiency (DE) of free radish peroxidase (FRP) and immobilized (IRP) on the dyes methylene blue (MB) and navy blue (NB) was determined by biodegradation assays conducted at 200 rpm for 1 h at 25°C. The evaluated parameters were: effect of pH, amount of biocatalyst (FRP for MB and NB; IRP for MB and NB), molar ratio dye: H2O2 (hydrogen peroxide) and contact time. Also, operational stability was analyzed. Under optimized conditions [pH 8.0 (MB) and pH 5.0 (NB), amount of biocatalyst to MB: 40.40 U (FRP) and 3.25 × 10−3 U (IRP), and to NB: 13.45 U (FRP) and 26.25 × 10−3 U (IRP), and molar ratio dye: H2O2 to IRP: MB (1:0.5 mmol/L) and NB (1:10 mmol/L)], the maximum DE for IRP was 86% for MB and 61% for NB. IRP can be reused ten times for MB and two times for NB. Thus, the results confirm the potential use of peroxidase of radish immobilized on coconut fiber in the biodegradation of dyes.},
     year = {2023}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Biodegradation of Textile Dyes by Radish Peroxidase (Raphanus sativus L.) Immobilized on Coconut Fiber
    AU  - Kennedy Costa da Conceicao
    AU  - Patrick Alan Dantas Araujo
    AU  - Alvaro Silva Lima
    AU  - Laiza Canielas Krause
    AU  - Alini Tinoco Fricks
    AU  - Cleide Mara Farias Soares
    AU  - Rebeca Yndira Cabrera-Padilla
    Y1  - 2023/01/30
    PY  - 2023
    N1  - https://doi.org/10.11648/j.cbe.20220704.11
    DO  - 10.11648/j.cbe.20220704.11
    T2  - Chemical and Biomolecular Engineering
    JF  - Chemical and Biomolecular Engineering
    JO  - Chemical and Biomolecular Engineering
    SP  - 54
    EP  - 68
    PB  - Science Publishing Group
    SN  - 2578-8884
    UR  - https://doi.org/10.11648/j.cbe.20220704.11
    AB  - The importance of biodegradation in the context of dye removal is presented as a function of the need to use enzyme immobilization as a key technology for effluent treatment. Immobilization is based on the need to improve the stability and recyclability of the biocatalyst in relation to the free enzyme, in addition to a lower risk of product contamination as an advantage. The present study aims to evaluate the biodegradation of textile dyes using radish peroxidase immobilized by physical adsorption method on coconut fiber, as well as its characterization in relation to pH, temperature, and infrared spectrum (FTIR). The discoloration efficiency (DE) of free radish peroxidase (FRP) and immobilized (IRP) on the dyes methylene blue (MB) and navy blue (NB) was determined by biodegradation assays conducted at 200 rpm for 1 h at 25°C. The evaluated parameters were: effect of pH, amount of biocatalyst (FRP for MB and NB; IRP for MB and NB), molar ratio dye: H2O2 (hydrogen peroxide) and contact time. Also, operational stability was analyzed. Under optimized conditions [pH 8.0 (MB) and pH 5.0 (NB), amount of biocatalyst to MB: 40.40 U (FRP) and 3.25 × 10−3 U (IRP), and to NB: 13.45 U (FRP) and 26.25 × 10−3 U (IRP), and molar ratio dye: H2O2 to IRP: MB (1:0.5 mmol/L) and NB (1:10 mmol/L)], the maximum DE for IRP was 86% for MB and 61% for NB. IRP can be reused ten times for MB and two times for NB. Thus, the results confirm the potential use of peroxidase of radish immobilized on coconut fiber in the biodegradation of dyes.
    VL  - 7
    IS  - 4
    ER  - 

    Copy | Download

Author Information
  • Department of Chemical Engineering, University of Santiago of Chile, Santiago, Chile

  • Institute of Technology and Research, Tiradentes University, Aracaju, Brazil

  • Institute of Technology and Research, Tiradentes University, Aracaju, Brazil

  • Institute of Technology and Research, Tiradentes University, Aracaju, Brazil

  • Department of Bromatological Analysis, Federal University of Bahia, Salvador, Brazil

  • Institute of Technology and Research, Tiradentes University, Aracaju, Brazil

  • Institute of Chemistry, Federal University of Mato Grosso do Sul, Campo Grande, Brazil

  • Sections